Skip to main content
Log in

Targeted therapies in thyroid cancer

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Differentiated thyroid carcinoma is the most frequent neoplasm of the endocrine system. Although thyroid cancer usually has an excellent prognosis, no therapeutic options are available for patients that develop metastases and are or became resistant to radioiodine therapy. The deeper knowledge of molecular aberrations that characterize tumor growth has provided novel targets in cancer therapy. Several proteins have been implicated as having a crucial role in the carcinogenesis of differentiated thyroid cancer, such as those involved in RET/PTC-RAS-RAF-MAPK pathway. Moreover, vascular aberrations and angiogenesis equilibrium have also been related to tumor growth. The development of new, targeted therapies and their encouraging initial results have opened a hopeful opportunity of treatment for these orphan therapy tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18):2164–2167

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  3. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 83(12):2638–2648

    Article  CAS  PubMed  Google Scholar 

  4. Chan JKC, Hirokawa M, Evans H et al (2004) Tumours of the thyroid and parathyroid: follicular adenoma. WHO classification of tumours: pathology, genetics of tumours of endocrine organs. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) WHO classification of tumours: pathology, genetics of tumours of endocrine organs. IARC, Lyon, pp 98–103

    Google Scholar 

  5. Mazzaferri EL, Jhiang SM (1994) Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97(5):418–428

    Article  CAS  PubMed  Google Scholar 

  6. Shah JP, Loree TR, Dharker D et al (1992) Prognostic factors in differentiated carcinoma of the thyroid gland. Am J Surg 164(6):658–661

    Article  CAS  PubMed  Google Scholar 

  7. Schlumberger MJ (1998) Papillary and follicular thyroid carcinoma. N Engl J Med 338(5):297–306

    Article  CAS  PubMed  Google Scholar 

  8. Maxon HR, Thomas SR, Hertzberg VS et al (1983) Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 309(16):937–941

    CAS  PubMed  Google Scholar 

  9. Durante C, Haddy N, Baudin E et al (2006) Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 91(8):2892–2899

    Article  CAS  PubMed  Google Scholar 

  10. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56(9):2155–2160

    Article  CAS  PubMed  Google Scholar 

  11. Williams SD, Birch R, Einhorn LH (1986) Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep 70(3):405–407

    CAS  PubMed  Google Scholar 

  12. Shibru D, Chung KW, Kebebew E (2008) Recent developments in the clinical application of thyroid cancer biomarkers. Curr Opin Oncol 20(1):13–18

    Article  CAS  PubMed  Google Scholar 

  13. Nikiforova MN, Nikiforov YE (2008) Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8(1):83–95

    Article  CAS  PubMed  Google Scholar 

  14. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63(7):1454–1457

    CAS  PubMed  Google Scholar 

  15. Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R (2000) Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract 196(1):1–7

    CAS  PubMed  Google Scholar 

  16. Nikiforova MN, Kimura ET, Gandhi M et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11):5399–5404

    Article  CAS  PubMed  Google Scholar 

  17. Casamassimi A, Miano MG, Porcellini A et al (1998) p53 genes mutated in the DNA binding site or at a specific COOH-terminal site exert divergent effects on thyroid cell growth and differentiation. Cancer Res 58(13):2888–2894

    CAS  PubMed  Google Scholar 

  18. Kroll TG, Sarraf P, Pecciarini L et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289(5483):1357–1360

    Article  CAS  PubMed  Google Scholar 

  19. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803

    Article  CAS  PubMed  Google Scholar 

  20. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  CAS  PubMed  Google Scholar 

  21. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 3(5):1011–1027

    Google Scholar 

  22. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  23. de la Torre NG, Buley I, Wass JA, Turner HE (2006) Angiogenesis and lymphangiogenesis in thyroid proliferative lesions: relationship to type and tumour behaviour 13(3):931–944

    Google Scholar 

  24. Yu XM, Lo CY, Chan WF, Lam KY, Leung P, Luk JM (2005) Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin Cancer Res 11(22):8063–8069

    Article  CAS  PubMed  Google Scholar 

  25. Viglietto G, Maglione D, Rambaldi M et al (1995) Upregulation of vascular endothelial growth factor (VEGF) and downregulation of placenta growth factor (PlGF) associated with malignancy in human thyroid tumors and cell lines. Oncogene 11(8):1569–1579

    CAS  PubMed  Google Scholar 

  26. Wilhelm SM, Carter C, Tang L et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  CAS  PubMed  Google Scholar 

  27. Carlomagno F, Anaganti S, Guida T et al (2006) BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98(5):326–334

    Article  CAS  PubMed  Google Scholar 

  28. Ratain MJ, Flaherty KT, Stadler WM et al (2004) Preliminary antitumor activity of BAY 43–9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase II randomized discontinuation trial (RDT). Proc Am Soc Clin Oncol 22(14S):4501

    Google Scholar 

  29. Gupta-Abramson V, Troxel AB, Nellore A et al (2008) Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 26(29):4714–4719

    Article  CAS  PubMed  Google Scholar 

  30. Kloos RT, Ringel MD, Knopp MV et al (2009) Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 27(10):1675–1684

    Article  CAS  PubMed  Google Scholar 

  31. Reuter CW, Morgan MA, Bergmann L (2000) Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96(5):1655–1669

    CAS  PubMed  Google Scholar 

  32. Yeung SC, Xu G, Pan J, Christgen M, Bamiagis A (2000) Manumycin enhances the cytotoxic effect of paclitaxel on anaplastic thyroid carcinoma cells. Cancer Res 60(3):650–656

    CAS  PubMed  Google Scholar 

  33. Hong DS, Camacho L, Ng C et al (2007) Phase I study of tipifarnib and sorafenib in patients with biopsiable advanced cancers. Proc Am Soc Clin Oncol 25(18S):3549

    Google Scholar 

  34. Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    Article  CAS  PubMed  Google Scholar 

  35. Agarwal R, Banerji U, Camidge DR et al (2008) The first-in-human study of the solid oral dosage form of AZD6244 (ARRY-142886): a phase I trial in patients (pts) with advanced cancer. Proc Am Soc Clin Oncol 26(20S):3535

    Google Scholar 

  36. Polverino A, Coxon A, Starnes C et al (2006) AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 66(17):8715–8721

    Article  CAS  PubMed  Google Scholar 

  37. Sherman SI, Wirth LJ, Droz JP et al (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359(1):31–42

    Article  CAS  PubMed  Google Scholar 

  38. Hu-Lowe D, Hallin M, Feeley R et al (2002) Characterization of potency and activity of the VEGF/PDGF receptor tyrosine kinase inhibitor AG013736. Proc Am Assoc Cancer Res 43:5357

    Google Scholar 

  39. Rugo HS, Herbst RS, Liu G et al (2005) Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 23(24):5474–5483

    Article  CAS  PubMed  Google Scholar 

  40. Cohen EE, Rosen LS, Vokes EE et al (2008) Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 26(29):4708–4713

    Article  CAS  PubMed  Google Scholar 

  41. Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25(7):884–896

    Article  CAS  PubMed  Google Scholar 

  42. Britten CD, Kabbinavar F, Hecht JR et al (2008) A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol 61(3):515–524

    Article  CAS  PubMed  Google Scholar 

  43. Ravaud A, de la Fouchardière C, Courbon F et al (2008) Sunitinib in patients with refractory advanced thyroid cancer: the THYSU phase II trial. Proc Am Soc Clin Oncol 26(20S):6058

    Google Scholar 

  44. Cohen EE, Needles BM, Cullen KJ et al (2008) Phase 2 study of sunitinib in refractory thyroid cancer. Proc Am Soc Clin Oncol 26(20S):6025

    Google Scholar 

  45. Goulart B, Carr L, Martins RG et al (2008) Phase II study of sunitinib in iodine refractory, well-differentiated thyroid cancer (WDTC) and metastatic medullary thyroid carcinoma (MTC). Proc Am Soc Clin Oncol 26(20S):6062

    Google Scholar 

  46. Wolter P, Stefan C, Decallonne B et al (2008) Evaluation of thyroid dysfunction as a candidate surrogate marker for efficacy of sunitinib in patients (pts) with advanced renal cell cancer (RCC). Proc Am Soc Clin Oncol 26(20S):5126

    Google Scholar 

  47. Herbst RS, Heymach JV, O’Reilly MS, Onn A, Ryan AJ (2007) Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 16(2):239–249

    Article  CAS  PubMed  Google Scholar 

  48. Wells SA, Gosnell JE, Gagel RF et al (2007) Vandetanib in metastatic hereditary medullary thyroid cancer: follow-up results of an open-label phase II trial. Proc Am Soc Clin Oncol 25(18S):6018

    Google Scholar 

  49. Haddad RI, Krebs AD, Vasselli J, Paz-Ares LG, Robinson B (2008) A phase II open-label study of vandetanib in patients with locally advanced or metastatic hereditary medullary thyroid cancer. Proc Am Soc Clin Oncol 26(20S):6024

    Google Scholar 

  50. Masago K, Asato R, Fujita S et al (2009) Epidermal growth factor receptor gene mutations in papillary thyroid carcinoma. Int J Cancer 124(11):2744–2749

    Article  CAS  PubMed  Google Scholar 

  51. Croyle M, Akeno N, Knauf JA et al (2008) RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res 68(11):4183–4191

    Article  CAS  PubMed  Google Scholar 

  52. Pennell NA, Daniels GH, Haddad RI et al (2008) A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid 18(3):317–323

    Article  CAS  PubMed  Google Scholar 

  53. Salgia R, Sherman S, Hong DS et al (2008) A phase I study of XL184, a RET, VEGFR2, and MET kinase inhibitor, in patients (pts) with advanced malignancies, including pts with medullary thyroid cancer (MTC). Proc Am Soc Clin Oncol 26(20S):3522

    Google Scholar 

  54. Eder JP, Heath E, Appleman L et al (2007) Phase I experience with c-MET inhibitor XL880 administered orally to patients (pts) with solid tumors. Proc Am Soc Clin Oncol 25(18S):3526

    Google Scholar 

  55. Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680

    Article  CAS  PubMed  Google Scholar 

  56. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085

    Article  PubMed  Google Scholar 

  57. Bauer AJ, Terrell R, Doniparthi NK et al (2002) Vascular endothelial growth factor monoclonal antibody inhibits growth of anaplastic thyroid cancer xenografts in nude mice. Thyroid 12(11):953–961

    Article  CAS  PubMed  Google Scholar 

  58. Ain KB, Lee C, Williams KD (2007) Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas. Thyroid 17(7):663–670

    Article  CAS  PubMed  Google Scholar 

  59. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC (2008) Thalidomide and lenalidomide: mechanism-based potential drug combinations. Leuk Lymphoma 49(7):1238–1245

    Article  CAS  PubMed  Google Scholar 

  60. Ain KB, Lee C, Holbrook KM, Dziba JM, Williams KD (2008) Phase II study of lenalidomide in distantly metastatic, rapidly progressive, and radioiodine-unresponsive thyroid carcinomas: preliminary results. Proc Am Soc Clin Oncol 26(20S):6027

    Google Scholar 

  61. Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114

    CAS  PubMed  Google Scholar 

  62. Hoos A, Stojadinovic A, Singh B et al (2002) Clinical significance of molecular expression profiles of Hürthle cell tumors of the thyroid gland analyzed via tissue microarrays. Am J Pathol 160(1):175–183

    CAS  PubMed  Google Scholar 

  63. Tabernero J, Schöffski P, Dirix L et al (2008) Phase I study to determine the safety, pharmacology, and pharmacodynamics of JNJ-26854165 in subjects with advanced stage and/or refractory solid tumors. EORTC-NCI-AACR Annual Meeting 2008, oral abstract 1592

  64. Piekarz R, Luchenko V, Draper D et al (2008) Phase I trial of romidepsin, a histone deacetylase inhibitor, given on days one, three and five in patients with thyroid and other advanced cancers. Proc Am Soc Clin Oncol 26(20S):3571

    Google Scholar 

  65. Kebebew E, Peng M, Reiff E et al (2006) A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery 140(6):960–966

    Article  PubMed  Google Scholar 

  66. Zhang Y, Jia S, Liu Y et al (2007) A clinical study of all-trans-retinoid-induced differentiation therapy of advanced thyroid cancer. Nucl Med Commun 28(4):251–255

    Article  PubMed  CAS  Google Scholar 

  67. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Tabernero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capdevila, J., Perez-Garcia, J., Obiols, G. et al. Targeted therapies in thyroid cancer. Targ Oncol 4, 275–285 (2009). https://doi.org/10.1007/s11523-009-0124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-009-0124-y

Keywords

Navigation